Convergence analysis for the fractional decomposition method applied to class of nonlinear fractional Fredholm integro-differential equation

نویسندگان

چکیده

For scientists conducting research, fractional integral differential equation analysis is crucial. Therefore, in this study, we investigate utilizing a novel method called the decomposition method, which applicable to nonlinear Fredholm integro-differential equations. Then, apply approach five test problems for general derivative [Formula: see text] involving To best of our knowledge, are first ever do so because very complicated calculations involved when dealing with case text]. integral-differential equations, provide both exact and approximate solutions. Throughout work, Caputo discussed. This technique leads us say that precise, accurate, efficient, according theoretical analysis.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations

This paper successfully applies the Adomian decomposition  and the modified Laplace Adomian decomposition methods to find  the approximate solution of a nonlinear fractional Volterra-Fredholm integro-differential equation. The reliability of the methods and reduction in the size of the computational work give these methods a wider applicability. Also, the behavior of the solution can be formall...

متن کامل

Spectral-collocation Method for Fractional Fredholm Integro-differential Equations

We propose and analyze a spectral Jacobi-collocation approximation for fractional order integro-differential equations of FredholmVolterra type. The fractional derivative is described in the Caputo sense. We provide a rigorous error analysis for the collection method, which shows that the errors of the approximate solution decay exponentially in L∞ norm and weighted L2-norm. The numerical examp...

متن کامل

Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations

This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...

متن کامل

Numerical approach for solving a class of nonlinear fractional differential equation

‎It is commonly accepted that fractional differential equations play‎ ‎an important role in the explanation of many physical phenomena‎. ‎For‎ ‎this reason we need a reliable and efficient technique for the‎ ‎solution of fractional differential equations‎. ‎This paper deals with‎ ‎the numerical solution of a class of fractional differential‎ ‎equation‎. ‎The fractional derivatives are described...

متن کامل

APPLICATION OF HAAR WAVELETS IN SOLVING NONLINEAR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

A novel and eective method based on Haar wavelets and Block Pulse Functions(BPFs) is proposed to solve nonlinear Fredholm integro-dierential equations of fractional order.The operational matrix of Haar wavelets via BPFs is derived and together with Haar waveletoperational matrix of fractional integration are used to transform the mentioned equation to asystem of algebraic equations. Our new met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algorithms & Computational Technology

سال: 2023

ISSN: ['1748-3018', '1748-3026']

DOI: https://doi.org/10.1177/17483026221151196